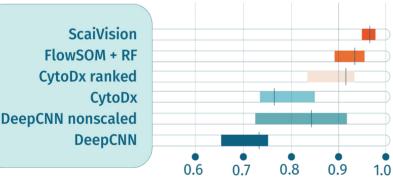



# Generating clinically relevant insights from single-cell data


# ScaiVision performs **best-in-class** at sample class prediction

#### **Key advantages of ScaiVision**

- Entirely **agnostic** to cell clusters or pre-determined cell types
- **Scalable** analysis of datasets up to hundreds of millions of cells without sub-sampling
- Retains single-cell resolution throughout the interpretation stage & calculates the clinical endpoint-associated score for every single cell



**Benchmarking study** 



AUC

## Results

- Outperforms all public competitor algorithms at the task of predicting CMV infection status
- ScaiVision attains a mean AUC of 0.96 across all 10 cross-validation splits

#### Conclusions

- ScaiVision performs as the best-in-class algorithm at identifying molecular biomarkers, which accurately predict clinical status of the samples
- Analysis with ScaiVision unlocks an unparalleled level of high-resolution and clinically relevant discoveries in single-cell datasets





Scailyte Inc. Basel www.scailyte.com contact@scailyte.com





## 🛞 scailyte°

## **True precision medicine through single-cell science** Generating clinically relevant insights from single-cell data

We have built a proprietary cluster-free, unbiased, and highly sensitive AI platform, **ScaiVision**, to accelerate the pace of drug development.

| Indication                                        | <b>Clinical question</b>                    | Technology                  | Tissue                          | Patients | Outcome and Status                                                                               |
|---------------------------------------------------|---------------------------------------------|-----------------------------|---------------------------------|----------|--------------------------------------------------------------------------------------------------|
| Sezary Syndrome<br>(CTCL)                         | Diagnosis of CTCL                           | CyTOF                       | PBMCs                           | 60 + 33  | 0.98 AUC; patent filed<br>(EP19219889) <b>Assay prototype</b>                                    |
| Endometriosis                                     | Diagnosis of<br>endometriosis               | scRNA-seq                   | PBMCs                           | 42 + 60  | 0.9 AUC; patent filed<br>(EP21204845)                                                            |
|                                                   |                                             | scRNA-seq                   | Endometrium                     | 35 + 30  | 0.9 AUC; patent filed<br>(EP21204856) <b>Clinical validation</b><br><b>and assay development</b> |
| Head and neck<br>squamous cell<br>carcinomas      | Prediction of toxicity                      | CyTOF                       | PBMCs<br>Clinical data          | 41       | 0.89 AUC for binned toxicity scores                                                              |
| Diffuse Large<br>B-Cell Lymphoma<br>(CAR-T cells) | Prediction of therapy response and toxicity | scRNA-seq                   | Infusion cell<br>product        | 23       | 0.8 AUC efficacy prediction<br>1.0 AUC toxicity prediction                                       |
| Refractory<br>rheumatoid<br>arthritis             | Treatment mode of action                    | scRNA-seq                   | Murine<br>hind-limbs            | 20       | 1.0 AUC<br>Service project                                                                       |
| Solid tumors<br>(TIL therapy)                     | Prediction of therapy response and toxicity | CITE-seq,<br>TCR-seq        | Infusion cell<br>product, PBMCs | 55       | ongoing<br>Service project                                                                       |
| Solid tumors<br>(cancer vaccine)                  | Prediction of therapy response and toxicity | FC, IHC,<br>proteomics, etc | PBMCs, serum,<br>tumor          | 20       | ongoing<br>Service project                                                                       |

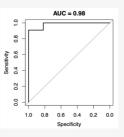
Scailyte discovers an accurate diagnostic biomarker signature for Cutaneous T-Cell Lymphoma(CTCL)

### 1.) ScaiVision Model Training **Experimental setup:** AD/Healthy CTCL Internal VS split: 70% training, 30% N=60 validation **Technology: CyTOF of PBMCs** 36 protein markers, 3.5 million cells B\_cells CD4\_T\_cells CD8\_T\_cells CDCs pDCs T\_cells **Spin**off

**TH**zürich

### 2.) Endpoint prediction

## Independent evaluation


```
cohort:
```

#### AD/Healthy



CTCL

#### **Performance:**



Scailyte Inc. Basel www.scailyte.com contact@scailyte.com


### 3.) Biomarker characterization

Protein marker ID and IVD prototyping:



Optimized FACS panel for 9 cell-surface markers

### Patent pending (EP19219889)







Forbes AI30 DACH