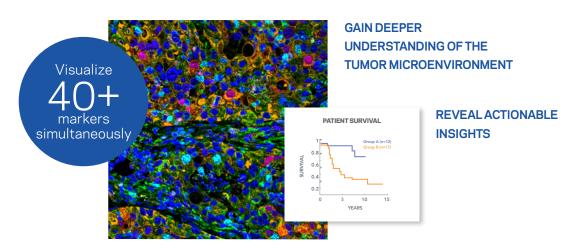


lonpath High-Definition Spatial Proteomics

QUANTITATIVE, SPATIAL SINGLE-CELL PHENOTYPE MAPPING


Could you be leaving critical info on the table with your current tissue analysis methods?

The rapid pace of innovation in immuno-oncology demands deeper understanding of the tumor microenvironment. Yet, available methods fall short.

- IHC, the current gold standard method is qualitative and does not provide the depth needed to meet the demands of immuno-oncology development
- Most multiplex techniques, including spatial transcriptomics, promise new insights but bury researchers in data that is not actionable and lack clinical grade repeatability

Ionpath delivers the next generation of tissue analysis: High-Definition Spatial Proteomics

- Achieve comprehensive, quantitative single-cell phenotype mapping at subcellular resolution
- Identify key mechanisms of action with clinical grade repeatability
- Reveal actionable insights, identify responder populations, or predict patient response

Ionpath | HIGH DEFINITION SPATIAL PROTEOMICS

GET THE MOST UNDERSTANDING OUT OF YOUR PRECIOUS HUMAN TISSUE SAMPLES

Multiplexed ion beam imaging, MIBI™, is the only technology that delivers the information needed for understanding the tumor microenvironment with the throughput and reproducibility required for clinical studies.

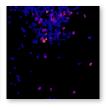
- Enumerate immune cell populations
- Quantify checkpoint marker expression on a single-cell basis
- Analyze spatial interactions between target and effector cells

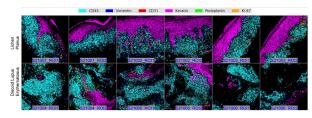
LEVERAGE OUR MULTI-DISCIPLINARY EXPERT TEAM TO ACCELERATE YOUR PROJECT

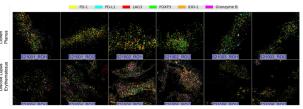
- The world-class, multi-disciplinary team at lonpath provides end-to-end Spatial Proteomic Services to support your tissue analysis needs.
- Projects defined and planned in collaboration with expert scientific team
- Rigorous validation with multiple layers of control ensures consistent data quality across large sample cohorts
- Expert data analysis with relevant, actionable information provided in a usable report form

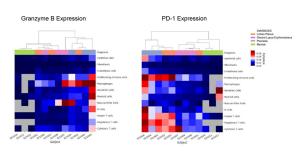
RAPID ADOPTION BY LEADING ORGANIZATIONS

- Leading pharmaceutical and biotech companies
- Top-tier academic and cancer research centers






CLASSIFICATION


PROTEIN EXPRESSION

SPATIAL **ANALYSIS**

ACTIONABLE INSIGHTS

SELECT PUBLICATIONS WITH MIBI-ENABLED RESEARCH

Predictive spatial signatures of breast cancer progression | Risom et al., Cell 2022 (view)

Immunoregulatory landscape of tuberculosis granulomas | McCaffrey et al., Nature Immunol. 2022 (view)

Multiplexed Ion Beam Imaging: Insights into Pathology | Liu, et al., Ann. Rev. Pathology 2022 (view)

An atlas of human small cell lung cancer | Chan et al., Cancer Cell 2021 (view)

An IFN- γ -driven inflammatory state in nivolumab-associated gastritis revealed by MIBI | Ferrian et al., Cell Reports Medicine 2021 (view)

Reproducible, high-dimensional imaging in archival human tissue by MIBI | Liu et al., Biorxiv 2021 (view)

Multimodal analysis of squamous cell carcinoma | Ji et al., Cell 2020 (view)

Metabolic profiling of human cytoxic T-cells | Hartmann et al., Nat. Biotechnol. 2020 (view)

Tumor microarchitecture in triple negative breast cancer | Keren et al., Cell 2018 (view)

