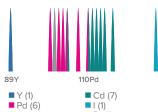
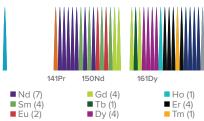


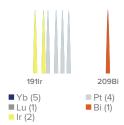
# Translating the complex immune system into disease insights with CyTOF technology




Reasons to choose CyTOF

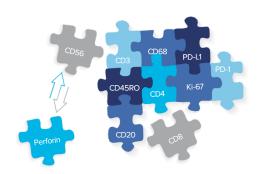
# THE CYTOF


# Reasons to take your high-dimensional


#### Precision data with discrete signals

Not impacted by spectral overlapping of fluorochromes and tissue autofluorescence




■ Rh (1)





#### Easy panel design to complete experiments quicker

Large number of available antibodies without overlap simplifies panel design and expansion

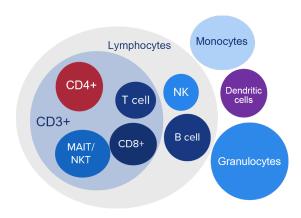


Start with ready-to-go panels and easily swap markers in and out.



#### Reproducible and comparable

Stained samples can be frozen, stored and shipped to support longitudinal studies and multi-site workflows.




## research beyond the limits of fluorescence



#### Capture rare or unexpected cell populations

Unbiased, high-dimensional profiling of 40-plus markers to uncover diverse immune subpopulations





# Minimal sample required, saving on limited clinical research material

Simultaneous staining and detection from a single tube or tissue scan, without multiple staining controls or time-consuming cyclic protocols





#### **Trusted by researchers**

The leading technology for high-parameter immune research





# Cytometry by time-of-flight (CyTOF® technology)

Applies purified heavy metal labels, not normally found in biological systems, instead of fluorophores



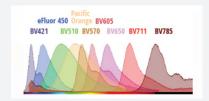
#### Risks of fluorescence

for high-parameter studies



**Missed** cell populations or **false positives** 




More iterations required in panel design



**Reduced sensitivity** where fluorescence overlap occurs



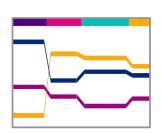
**Higher resource use** to compensate for spectral overlap



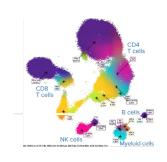
# From sample collection to high-dimensional insights in 3 days\*

### Flow cytometry

CD294


HLA-DR

Get started with the validated Maxpar® Direct<sup>™</sup> Immune Profiling Assay<sup>™</sup>.


#### 1 tube 30 markers (<300 µL of whole blood)

#### CD4 CD38 CD11c CD45RA CCR6 CD14 CD45RO CCR7 CD20 CD66b

#### 5 min analysis




#### 37 cell populations



Surface profiles Cell proliferation **Apoptosis** Metabolism Phosphoproteins Cytokine production Transcription factors

### Minimal signal overlap

| CHANNEL |   |    |      |   |   | 3    | ŧ    |      | ě    |      |      | ê    |      | B |      |      | B |      |      |      |    |    |
|---------|---|----|------|---|---|------|------|------|------|------|------|------|------|---|------|------|---|------|------|------|----|----|
| 89Y     | 1 | 0  | ٥    | ۰ | 0 | 0    | 0    | 0    | 0    | 0    | ۰    | 0    | 0    | ۰ | 0    | 0    | ۰ | 0    | 0    | 0    | 0  | ۰  |
| 142Nd   | ۰ | 1  | 0.02 | ٥ | ۰ | ۰    | ۰    | ۰    | ۰    | ۰    | ۰    | ۰    | 0.00 | ۰ | ۰    | ۰    | ۰ | ۰    | ۰    | ۰    | ۰  | ۰  |
| 14294   |   | aa | 1    | 0 | 0 |      | 0    | 0    | 0    | 0    | 0    | 0    | 0    | ۰ | 0    | 0    | 0 | 0    | ۰    | 0    | 0  | ۰  |
| 149Nd   | ۰ | aa | 0    | 1 | 0 | 0.01 | ۰    | 0    | 0    | 0    | ۰    | ۰    | 0    | 0 | 0    | 0    | 0 | 0    | •    | 0    | 0  | 0  |
| 1475m   |   | 0  | 0    | 0 | 1 | 0.02 | ۰    | 0    | 0    | 0    | 0    |      | ۰    | ۰ | 0    | ۰    | 0 | 0    | ۰    | ۰    | 0  | ۰  |
| 146Nd   | ۰ | ۰  | ۰    | 0 | ۰ | 1    | ۰    | 0    | 0    | 0    | 0    | 0    | 0    | 0 | 0    | 0    | 0 | 0    | •    | 0    | 0  | 0  |
| 1492m   |   |    | ۰    | ۰ | 0 | 0.01 | 1    | ۰    | ٥    | ۰    | ۰    | ۰    | ۰    | ۰ | 0    | ۰    | ۰ | 0    | ۰    | ٥    | ۰  | ۰  |
| 191Eu   | 0 | 0  | ٥    | 0 | 0 | 0    | •    | 1    | 0.01 | 0.02 | 0    | 0    | 0    | ۰ | 0    | 0    | 0 | 0    | 0    | 0    | 0  | 0  |
| D2Sm    | 0 | 0  | 0    | 0 | 0 | 0    | 0    |      | 1    | 0    | 0.01 | 0    | 0    | ۰ | 0    | 0    | 0 | 0    | 0    | 0    | 0  | 0  |
| 5 X u   | 0 | 0  | ۰    | 0 | 0 | 0    | 0    | 0.01 | 0    | 1    | 0    | 0    | 0    | • | 0    | 0    | 0 | 0    | 0    | 0    | 0  | 0  |
| D49m    |   | 0  | ٥    | 0 | 0 |      | 0.01 | 0    | 0.08 | 0.02 | 1    | 0.02 | 0    | 0 | 0    | 0    | 0 | 0    | 0    | 0    | 0  | 0  |
| 155 Gd  | 0 | ۰  | ۰    | 0 | 0 |      | ۰    | 0    |      | 0    | 0.01 | 1    |      | • | 0    | 0    | 0 | 0.02 | •    | 0    | 0  | 0  |
| 156 Gd  |   | ۰  | ۰    | 0 | 0 | 0    | 0    | 0    | 0    | 0    | ۰    | 0    | 1    | 0 | 0    | 0    | 0 | 0    | 0    | 002  | 0  |    |
| 165Ho   | 0 | 0  | 0    | 0 | 0 | 0    | 0    | 0    | 0    | 0    | 0    | 0    | ۰    | 1 | 0    | 0    | 0 | 0    | ۰    | 0    | ۰  | ۰  |
| 1076    | 0 | 0  | 0    | 0 | 0 | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0 | 1    | 0.07 | 0 | 0    | 0    | 0    | 0  | 0  |
| 1600    |   | 0  | 0    | 0 | 0 |      | 0    | 0    | 0    | 0    | 0    | 0    |      | • | 0.07 | 1    |   | 0    | •    | 0    | 0  |    |
| 10 9 Tm |   |    | ۰    | 0 | 0 |      | ۰    | ۰    | 0    | 0    | ۰    | 0    |      | • | 0    | 0.02 | 1 |      | •    | 0    |    |    |
| 17176   |   |    | ۰    | 0 | ۰ |      | 0    | 0    | 0    | 0    | ۰    | ۰    |      | • | 0    | 0    | • | 1    | 000  | 000  |    |    |
| 17 2/b  |   |    | ۰    | 0 | 0 | 0    |      | 0    |      | 0    |      | 0    |      |   | 0    | 0    |   | 0.01 | 1    | 0.10 | aa | aa |
| 17-4Yb  |   |    | ۰    | 0 | ۰ | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |   | 0    |      | 0 | 0    | 0.02 | 1    | aa | aa |
| 179Lu   |   |    | ۰    | 0 | ۰ |      |      |      |      |      |      | 0    |      |   |      |      |   |      |      |      | 1  | ۰  |
| 176Yb   | - | 0  | 0    | 0 |   |      | -    | -    | -    | -    | -    | 0    |      | - |      | -    | - |      | -    | -    |    | 1  |

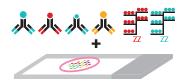


The CyTOF flow cytometry image (far left) shows minimal spillover between metal channels when compared with the same panel from a competitor spectral flow cytometer (left).

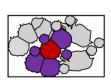
Quantify and visualize 40-plus markers in a single run.

\* After panel and image analysis optimization

Whether you are analyzing suspension or tissue samples, time-of-flight (TOF) technology combined with Maxpar® reagents enables a streamlined end-to-end workflow to complete high-parameter experiments faster than fluorescence-based detection.

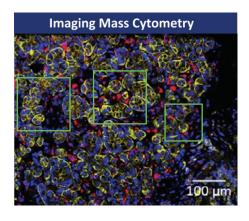

### **Tissue imaging**

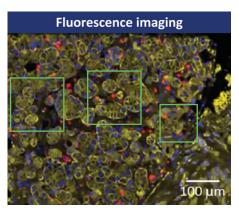
Get started with our Maxpar IMC<sup>™</sup> Cell Segmentation Kits and ready-to-go high-plex panels.


Simultaneous staining

One-step detection

High-plex data in minutes






Tissue architecture
Protein modifications
Signaling pathway activation
Cell injury states
Cell proliferation
Transcriptional signatures

## **Clear spatial imaging**

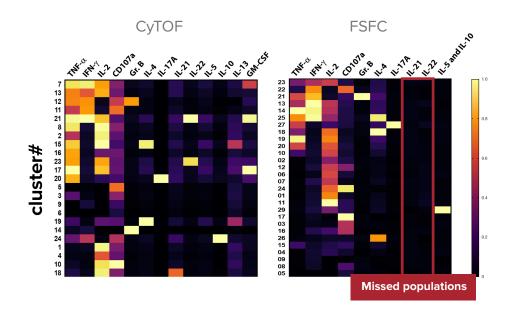




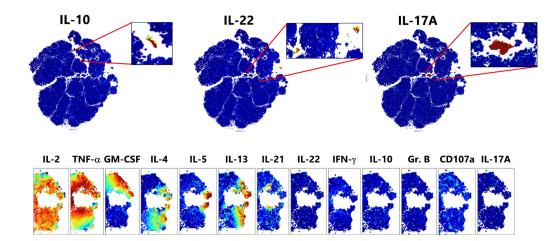
The Imaging Mass Cytometry™ image (far left) shows many well-defined red signals from CD68 that are indistinct or missing from the fluorescence image (left).

## Without compromise.

# Results you can trust, reproduce and publish


## See more with CyTOF

## Flow cytometry


CyTOF detects more immune subpopulations in a single cell compared to full spectrum flow cytometry (FSFC).

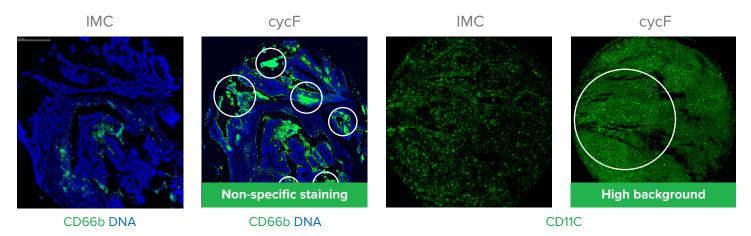
# Detect more cell populations with greater functional diversity.

The heat map on the left shows detection of IL-21 and IL-22, not present in the spectral data. Additionally, IL-5 and IL-10 were detected by CyTOF in independent channels.



#### Clear resolution and detection of low-frequency immune cells

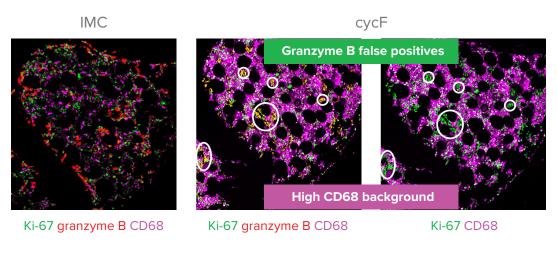



This data features findings from a comparison study using a 28-marker common panel including 12 cytokines. Data provided by Boston University. Application of opt-SNE to this CyTOF dataset highlights distinct combinations of effector functions from type 1, type 2 and type 17 lineages.

# See your true biology

## See clearly with IMC

## Tissue Imaging


IMC allows highly specific staining without the challenges of autofluorescence or false positives inherent to cyclic fluorescence-based imaging (cycF).



The cycF image (right) shows non-specific false-positive CD66b signal in colon adenocarcinoma.

CD11c signal is obscured by autofluorescence with cycF (right) in lymph node tissue.

#### Image highly-autofluorescent tissue types without challenge



Data generated from a comparison study with multiplex cyclic fluorescence (cycF) using a 27-marker common panel. Cyclic fluorescence data provided by Georgetown University.

In bone marrow, cycF data (right) shows granzyme B signal co-localized to the nucleus with Ki-67. The normal cytoplasmic or membranous localization of granzyme B can only be seen with IMC (left). CD68 signal is clear with IMC but obscured with cycF.

# The CyTOF Advantage.

A trusted technology used in

Over 200 clinical trials

Over 2,000 peer-reviewed publications

For **any** phase of research

Learn more: standardbio.com

#### For Research Use Only. Not for use in diagnostic procedures.

Information in this publication is subject to change without notice. Limited Use Label License: The purchase of this Standard BioTools Instrument and/or Consumable conveys to the purchaser the limited, nontransferable right to use only with Standard BioTools Consumables and/or Instruments respectively except as approved in writing by Standard BioTools Inc. (f.k.a. Fluidigm Corporation): www.standardbio.com/legal/salesterms. Patents: www.standardbio.com/legal/notices. Trademarks: Standard BioTools, the Standard BioTools logo, Fluidigm, the Fluidigm logo, CyTOF, Direct, Imaging Mass Cytometry, IMC, Immune Profiling Assay and Maxpar are trademarks and/or registered trademarks of Standard BioTools Inc. or its affiliates in the United States and/or other countries. All other trademarks are the sole property of their respective owners.